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GAS DISTRIBUTION IN A DEEP GRANULAR
BED INJECTED BY FLAT JETS

Yu. A. Buevich, N, A, Kolesnikova, UDC 66.096.5
and A, N, Tsetovich

The gas-flow distribution is examined for a set of identical equidistant flat jets entering a deep
immobile or fluidized bed,

There is considerable engineering interest in the distribution of the gas injected as jets into a granular
bed; this applies particularly in the simulation of exchange in catalytic reactors and other equipments, Also,
the gas distribution is extremely important to jet fluidization, which tends to occur with many existing gas-
distributing grids, and also has a bearing on the structure of the bed near the wall in the fluidized state, as
well as on the shape of any stagnant zones, and so on.

A general method has been given [1] for solving two-dimensional problems in gas distribution. Here s
we use the basic assumptions of [1]: it is supposed that we can neglect the variation in the dynamic gas pres-
sure along the jets by comparison with the pressure change within the dense phase of the bed, in which case the
pressure within a jet may be taken as constant. The hydraulic resistance to the flow entering the dense phase
is taken as a linear function of the infiltration speed, while the coefficient of proportionality is independent of
the coordinates, i.e., we consider a linear case in infiltration theory., Since the gas speed is usually much
greater than the speed of the regular particle motion in the dense phase, we consider the latter as an immobile
porous body. The effects of the upper boundary of the bed are neglected, which is justified if the height of each
jet is much less than the height of the bed.

The jets are considered as entering from the bottom upward and may be simulated [1] by means of a sys-
tem of sections x' = 2nLh, 0 =y'=h (n =0, £1, %2, ...) in the complex plane z' = x' + iy'; within the frame-
work of this external treatment [1], the length h of a section, which characterizes the height of the jets, is
taken as given a priori. Some information has been published [2] on the dependence of h on the dimensions of
the injection slots, the bed parameters, and the gas speed at the slot level, Also, Lh is equal to half the dis-
tance between the jets.
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It is convenient to use the dimensionless coordinates z = x + iy, which have a scale h, in which the length
of the sections is unity, while the distance between the adjacent jets is 2L, Then by analogy with [1] we obtain
the following pressure distribution in the dense phase:

Ap=0,dp/ox=0 (x=0,y>1; x=L, y>>0),
p = const (x =0, 0<y< 1), Opldy =~ —ahu® (O<x<L, y=0), @

and the gas pressure in the bed unperturbed by the jets is
p°= —oahu’y, 2)

while the velocity u® of the unperturbed flow may be greater or less than the minimum fluidization velocity
Uxke
The potential for the infiltration velocity is
p—p°
ah

¢=— ,u=u’+v, v=y9, 3)

and from (1) we obtain
Ap=0, dp/dx=0 (x=0, y>1; x=L, y>0),

¢=—uYy(x=0 0y<l), dploy=0 (O<x<L, y=0) @

(the pressure within the jet is taken as zero for reckoning the pressure).

Equations (1) and (4) are discussed within the half-strip 0 = x = L, y = 0, which is quite sufficient by
virtue of the obvious symmetry. This half-strip in the z = x + iy plane is mapped conformably on the upper
half-plane of the ¢ = £ + in complex plane by the analytical function

= — oS —ni, (5)

in which the line of section x = 0, 0 = y = 1 becomes the part —8= ¢ = —1 of the real axis in the ¢ plane, where
8 = cosh /L.

We follow [1] and introduce the complex flow potential = ¢ + iy, where ¢ is a function harmonically con-
jugate to @, as well as the function F(¢) = d¥dg, for which we have the following Hilbert problem:

ReF(§) =f (&), —Pp<EL<—1, n=0,
2 (6)
ImF()=0t<—B E>—1,1=0; B=ch -

where F(¢) is an analytic function that is everywhere bounded except possibly at the points ¢ =—1 and £ = —8,
where the integral is bounded [3]. In (6) we have the following function [1}:

fo=20_0% o _ 4L = gl n=0 M

where the corresponding boundary condition from (4) is to be used.

The Keldysh—Sedov formula [3] provides the solution to this problem; we have

1
r iw’l dt '[ /' ;“‘ﬁ . -
F(7) = - Fle [ ——
©=1 j Tehihi—y >V T VT B o ®

72
—B

where C and F(») are constants,

The complex velocity U = ux—ivy is put in the form

Ultz) = 4o = dd .ﬁi_c_:—n— sin id F{——cos —E}. ©
dz a;  dz L 1 L

t~

Since U(z) is bounded at infinity, we obtain from (8) and (9) that F(~) = 0; the constant C in (8) can be de-
rived from the obvious condition
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, Q
= ImU = ——,
B TY) 10

which reflects the fact that the gas flow rate in each jet is Q. We pass to the limit y — « in (8) and (9) and de-
rive the integral to obtain from (10) that

L b4
tg [sh —], 11)
arctg (s 2L)

which completes the derivation of (8) and (9).

In the very simple cases u°® = 0, i.e., a jet entering an immobile granular bed, we have

12)

—i/2
U(z)= Q_ g T2 (l—cos _‘Ei) s ] .
2hL L L L L

We separate the real and imaginary parts in (12) to obtain expressions for the dimensionless velocity
components: ) .
- u V2 (nx) __g_c_y_) i Y (2 cinn
= —F-=—p [cos 5T ch( 5L cos A sin oL s Y )sm ,

~ u Ve [ my \ . T Ty
“w= 2. TR [km 5-) b (5 )Smwsm( oL 'Sh( oL )cosx},

where the following quantities have been introduced:

el 5 s () ()] () (2

sin (nx/L) sh (my/L) u -9

13)

1
P e ch (/L) — cos | ZX ch(ﬂ)’ A
(L) 3

If L — » (i.e., for a single jet), the above formulas readily give expressions for the velocity components
previously derived [1].

The dimensionless quantities of (13) are shown as functions of the coordinates for L = 1 in Fig, la; the
flow tends to become uniform as y increases, and this then has a velocity uy = 0, Uy = Us} the flow is ex-
tremely close to uniform even for y of 1.5-2, i.e., at a height above the gas-distributing system 1,5-2 times
the height of each individual jet. The curves of Fig. 1la clearly characterize the establishment of the fluidized
state over a slot grid if uy > u -

In the general case, we have u° =0, and the dimensionless velocity components can be put as

£

=0y = Uyfle = GV, + 1, (1 + AG), 15
=G(1+V,) +u,(l+ AG),

&)

=G -+-v, = ulu
where the right sides contain the dimensionless quantities of (13) characteristic of an immobile bed without

injection (u° = 0), while the parameters are

G=-"_; A= 2 arctg ('sh X ) (16)
Us Lo 2L
and the vector V is defined by
. i . (mz B — cos (m2/L) J”"’ o dt | B —ch nz an
Ve Vy =— P ( L ) [ 1 — cos (mz/L) Jﬁ VE—1) (L B) [t -+ cos(n2/L)] L

Parameter G is the ratio of the flows due to initial uniform injection with velocity u® and jet injection, respec-
tively.
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Behavior of the dimensionless compo-

nents of the gas velocity: a) in an immobile bed

with G = 0 and L. = 1; b) in an immobile or fluidi-

zedbed (G=1and L = 1),

In principle, the integral in (17) can be calculated by reduction to elliptic functions; however, it is more
convenient for practical calculations to separate the real and imaginary parts in (17) and derive the real inte-
grals numerically. Figure 1b shows characteristic results from (15) for x and y for L = 1 and G = 1 which
were derived numerically with a BESM-4 computer, As in the injection of a single jet into a bed [1], we have
here a form of gas injection in which the jets enter a bed unperturbed by the flow, with jet spaces in the lower
part and gas escaping from the upper part, As a result, the vertical component of the speed of the overall
flow is less than uy at heights above the grid less than h; Fig. 2 shows the critical level at which injection is

replaced by ejection in relation fo the parameters G and L (these results were also derived numerically).

The zones of local fluidization in an otherwise immobile bed may be examined along with possible stag-
nant zones in a fluidized bed in terms of the isotachs, i.e., lines in the (x, y) plane at which the vertical com-

ponent of the velocity takes fixed values.

iy (x, 4 G, L) =T,

These isotachs are defined in inexplicit form by

18)
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Fig, 2, Critical level y* for replacement of injection by ejection in
a jet as a function of 2L/G for various L: 1) L —»; 2) L = 1,

Fig, 3. Distribution of the isotachs for the vertical component of
the velocity: a) bed with G = 0; b) bed with G = 1,

Fig. 4. Zones of particles circulation for a single gas jet
entering a bed of spherical polystyrene particles of diam-
eter 2.5 mm, slot width 1.2 mm, and @ (m%h) of 15 (a)
20.8 (b) and, bed height, 150 mm; grid spacing, 1 cm, The
dashed line is the theoretical boundary of the circulation
zone constructed in a section representing the effective
height of the jet.

where ﬁy is defined in (15) and I' is a parameter; the pattern of the isotachs for an immobile bed (G = 0) is
essentially different from that of an infiltrated or fluidized bed (G > 0).

In the first case (Fig. 3a), with I' > 1, the isotachs are closed curves tangential at the upper points to
lines that represent the jets, and they resemble the lines of constant velocity discussed in [1]. The isotach
corresponding to I' = 1 recedes to infinity and asymptotically approaches the straight lines x = =L, (for a jet
along the line x = 0). The isotach for I' < 1 intersects these straight lines at a finite value of the dimension-
less coordinate y, where it meets the isotachs arising from adjacent jets. Clearly, the isotachs lie along
the base y = 0 of the bed for I' = 0. In ux = Iuw, the region within a closed isotach or that above the unclosed
isotach corresponding to the critical value I'yx may represent local fluidization and ascending motion of the
granular material.

In the second case, we have G > 0 and, therefore, u° = 0; closed isotachs arise for I" sufficiently small,
which lie around the jets, If I'«+ corresponds to such an isotach, the granular material will be fluidized every-
where outside the stagnant zones, i.e,, areas within the isotachs that directly adjoin the jets. The material
is such a stagnant zone is either immobile or else slides downward as a body. Figure 3b shows the isotach
pattern for G = 1,
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If u° + uy is less than uy, a closed local-fluidization zone or circulation area is formed around each jet;
these adjacent zones clearly come together as u° + u, increases, It is then possible, in principle, for the
immobile parts between adjacent zones to be broken up on account of various random factors, i.e., one obtains
a partially fluidized bed, with a granular material fluidized in a certain region directly above the jets, whose
thickness is roughly equal to the vertical scale of the local fluidization zones, while there is no fluidization
above and below that area,

We collaborated with G, A. Minaev and S. M. Ellengorn in performing a series of measurements on the
cavities and circulation zones formed near single and multiple jets in order to derive a fuller physical picture
of the processes occurring in a granular bed on jet injection; transparent models for immobile and fluidized
beds were used. The curves of Fig. 3 represent the shapes of the zones closely. Details of the results a
these experiments will be presented elsewhere, but Fig. 4 shows results for a single jet entering an immobile
bed, along with the theoretical boundaries to the circulation zone.

NOTATION
A is the parameter in (16);
C is the constant defined in (11);
F is the analytical function from solution of Hilbert equation in (6);
1 {(3] is the function defined in (7);
h is the effective jet height;
L is the half dimensionless distance between jets;
p is the gas pressure;
Q is the gas flow rate in jet;
R is the parameter in (14);
U is the complex velocity;
u is the total gas flow velocity;
Uoo is the average velocity of flow due to jets;
v is the vector defined by (17);
4 is the flow velocity due to jets;
X', y' are the coordinates;

zZ =X+ 1y is the complex plane of dimensionless coordinates;
is the hydraulic resistance coefficient of dense phase;
is the parameter defined in (6);
is the parameter in (18);
£ +in is the complex plane of coordinates defined by function (5);
is the angle defined in (14);
is the filtration flow potential;
is the function harmonically conjugate to ¢.

A "]
I

Indices

° is the flow unperturbed by jets;
* is the minimal fluidization;
-, A are the dimensionless velocities.
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